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Why do we need transfer learning

Machine do have its weakness, it has no ability to "transfer learning". The trained 
models can not be adopted in different related scenarios, for example AlphaGo can't 
play Chinese chess.

?

?

?

Slide credit: Qiang Yang
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In the human evolution, the ability of transfer learning is very important. We can 
extend learned knowledge to other scenarios. For example, after learning riding 
bicycles, it is very easy to ride motorcycles. 

Why do we need transfer learning
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Why do we need transfer learning

Although, deep learning has achieved great success in many tasks, it is non-trivial to 
address these problems in application: 

Small data1 Reliability2 Personality3

Slide credit: Qiang Yang
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What is transfer learning?

• Traditional deep learning when training and testing share similar 
distribution:

Feature
prediction

loss
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What is transfer learning?

Source Target
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What is domain adaptation?

[1] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on knowledge and data engineering, 2010, 22(10): 
1345-1359.
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Due to many factors (e.g., illumination, pose, and image quality), there is always a 
distribution change or domain shift between two domains that can degrade the 
performance.

What is domain adaptation?

[2] M. Wang and W. Deng. Deep visual domain adaptation: A survey. Neurocomputing, 312:135 – 153, 2018.
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What is domain adaptation?

Due to distribution change or domain shift between two domains, the classifier 
learned for the source domain can not be applied to the target domain.

(a) non-adapted (a) adapted
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What is domain adaptation?

• Supervised DA, a small amount of labeled target data are present. However, the 
labeled data are commonly not sufficient for tasks. 

• Semi-supervised DA, both limited labeled data and redundant unlabeled data in 
the target domain are available in the training stage, which allows the networks to 
learn the structure information of the target domain. 

• Unsupervised DA, no labeled but sufficient unlabeled target domain data are 
observable when training the network. 

DA

One-step 
DA

Multi-step
DA

Select intermediate 
domain

Homogeneous 
DA

Heterogeneous 
DA

Labeled+unlabeled
target data 

Supervised
DA

Semi-Supervised
DA

Unsupervised
DA

Labeled target data 

Unlabeled target data 

[2] M. Wang and W. Deng. Deep visual domain adaptation: A survey. Neurocomputing, 312:135 – 153, 2018.
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The key of transfer learning

The key element of transfer learning is to discover the commonness between the two 
fields. Once this commonness is discovered, transfer learning becomes easy. We call 
this commonness as common features in machine learning.

DRIVE 
ON RIGHT

VS

Slide credit: Qiang Yang
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Shallow domain adaptation

• Traditional deep learning

• Instance adaptation

• Feature adaptation

• Model adaptation

Slide credit: Meina Kan

[1] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on knowledge and data engineering, 2010, 22(10): 
1345-1359.
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Domain 
adaptation

Discrepancy-based DA

Adversarial-based DA Reconstruction-based DA

fine-tuning the deep network with labeled 
or unlabeled target data to diminish the 
domain shift

using domain discriminators to 
encourage domain confusion 
through an adversarial objective

using the data reconstruction 
as an auxiliary task to ensure 
feature invariance

 class criterion

 statistic criterion

 architecture criterion

 geometric criterion

 generative models

 non-generative models

 encoder-decoder reconstruction

 adversarial reconstruction

Deep visual domain adaptation: A survey

[2] M. Wang and W. Deng. Deep visual domain adaptation: A survey. Neurocomputing, 312:135 – 153, 2018.
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[3] J. Yosinski , J. Clune , Y. Bengio , H. Lipson , How transferable are features in deep neural networks? In NIPS, 2014, pp. 
3320–3328 . 

Supervised DA method: fine-tune

First-layer features appear not 
to be specific to a particular 
dataset or task, but general in 
that they are applicable to 
many datasets and tasks. 
Features must eventually 
transition from general to 
specific by the last layer of the 
network.

B3B: the first 3 layers are copied from baseB
and frozen. The five higher layers are 
initialized randomly and trained on dataset B.
A3B: the first 3 layers are copied from baseA
and frozen. The five higher layers are 
initialized randomly and trained on dataset B.
B3B+: just like B3B, but all layers learn.
A3B+: just like A3B, but all layers learn.
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Supervised DA method: fine-tune

It showed how transferability is 
negatively affected by two distinct 
issues: optimization difficulties 
related to splitting networks in the 
middle of fragilely co-adapted layers 
and the specialization of higher layer 
features to the original task at the 
expense of performance on the target 
task. 

The size of target dataset 

Low Medium High 

The 
distance 
between 
domains

Low Freeze
freeze or 

tune 
Tune 

Medium 
freeze or 

tune 
Tune Tune

High 
freeze or 

tune 
Tune Tune
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Unsupervised DA

• Traditional deep learning

• Instance adaptation

• Feature adaptation

• Model adaptation

• MMD:
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Unsupervised DA method

Most deep DA methods try to learn more transferable representations through 
mapping both domains into a domain-invariant feature space, and then directly apply 
the classifier learned from only source labels to target domain.

Some papers explore domain-invariant feature 
spaces by minimizing some measures of domain 
discrepancy such as statistic loss, adversarial loss 
and reconstruction loss
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Unsupervised DA method: DDC (1.1)

Maximum mean discrepancy (MMD) is a commonly-used statistic loss for 
unsupervised DA. The hidden representations of images of different domain are 
embedded in a reproducing kernel Hilbert space, and the mean embeddings of 
distributions cross domains can be explicitly matched.

Given two distributions s and t, the MMD between them is defined as:1

2 Denote by                          and                            drawn from the distributions s and t, 
respectively, an empirical estimate of MMD is given as:

3 The main idea of DDC and DAN is to integrate this MMD estimator:

[4] Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. Deep domain confusion: Maximizing for domain 
invariance. CoRR, abs/1412.3474, 2014.
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Unsupervised DA method: DDC (1.1) 

A D W
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Unsupervised DA method: DAN (1.2)

DAN that matches the shift in marginal distributions across domains by adding
multiple adaptation layers and exploring multiple kernels, assuming that the 
conditional distributions remain unchanged.

Adapting a single layer cannot undo the dataset bias between the source and the target, since there are 
other layers that are not transferable. The multiple kernels with different bandwidths can match both 
the low-order moments and high-order moments to minimize the domain discrepancy.

[5] M. Long , Y. Cao , J. Wang , M. Jordan , Learning transferable features with deep adaptation networks, in ICML, 2015, 
pp. 97–105 . 
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Unsupervised DA method: RTN (1.3)

[6] M. Long , H. Zhu , J. Wang , M.I. Jordan , Unsupervised domain adaptation with residual transfer networks, in NIPS, 
2016, pp. 136–144 . 
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Unsupervised DA method: JAN (1.4)

Transfer learning will become more challenging as domains may change by the joint 
distributions P(X,Y) of input features X and output labels Y. The distribution shifts 
may stem from the marginal distributions P(X), the conditional distributions P(Y|X), 
or both.

Kernel embeddings can be readily 
generalized to joint distributions of two or 
more variables using tensor product feature 
spaces.

[7] M. Long, J. Wang, and M. I. Jordan. Deep transfer learning with joint adaptation networks. arXiv preprint 
arXiv:1605.06636, 2016.
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Unsupervised DA method: JAN (1.4)
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Unsupervised domain adaptation

• Traditional deep learning

• Instance adaptation

• Feature adaptation

• Model adaptation

• MMD:
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Unsupervised DA method: RevGrad (2.1)

[8] Y. Ganin , V. Lempitsky , Unsupervised domain adaptation by backpropagation, in ICML, 2015, pp. 1180–1189 .

The domain-adversarial neural network (DANN) integrated a gradient reversal layer 
(GRL) to train a feature extractor by maximizing the domain classifier loss and 
simultaneously minimizing the label predictor loss.



26

Unsupervised DA method: RevGrad (2.1)

1 Max-min optimization

2 Gradient reversal layer
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Unsupervised DA method: RevGrad (2.1)
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Unsupervised DA method: iCAN (2.2)

Collaborative and Adversarial Network (CAN) through domain-collaborative and 
domain adversarial training of neural networks. 
• Domain informative representations: from lower blocks through collaborative 

learning 
• Domain uninformative representations: from higher blocks through adversarial 

learning.

[9] W. Zhang, W. Ouyang, W. Li, and D. Xu. Collaborative and adversarial network for unsupervised domain adaptation.
In CVPR, pages 3801–3809, 2018.

1

2

3
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Unsupervised DA method: MADA (2.3)

The difficulty of domain adaptation: 
• target label space is only a subspace of the source label space.
• discriminative structures may be mixed up or falsely aligned across domains. 

[10] Z. Pei, Z. Cao, M. Long, and J. Wang. Multi-adversarial domain adaptation. In AAAI Conference on Artificial 
Intelligence, 2018
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Unsupervised DA method: MADA (2.3)

A multi-adversarial domain adaptation (MADA) approach captures multimode 
structures enable fine-grained alignment of different data distributions based on 
multiple domain discriminators. 
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Unsupervised DA method: MADA (2.3)
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Unsupervised DA method: Weighted Adversarial Nets (2.4)

The importance weighted adversarial nets-based partial domain adaptation method 
can identify the source samples that are potentially from the outlier classes and, at the 
same time, reduce the shift of shared classes between domains.

The intuition of the weighting scheme is 
that if the activation of the first domain 
classifier is large, the sample can be 
almost perfectly discriminated from the 
target domain by the discriminator. 

[11] Zhang J, Ding Z, Li W, et al. Importance Weighted Adversarial Nets for Partial Domain Adaptation. In CVPR. 2018: 
8156-8164.

1

2
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Unsupervised DA method: DRCN (3.1)

The model is optimized through multitask learning, that is, jointly learns the (supervised) 
source label prediction and the (unsupervised) target data reconstruction tasks. The aim is 
that the encoding shared representation should learn the commonality between those tasks 
that provides useful information for cross-domain object recognition

[12] M. Ghifary , W.B. Kleijn , M. Zhang , D. Balduzzi , W. Li , Deep reconstruction–classification networks for 
unsupervised domain adaptation, in ECCV, Springer, 2016, pp. 597–613 
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DSNs explicitly and jointly model both private and shared components of the domain 
representations. The private component of the representation is specific to a single 
domain and the shared component of the representation is shared by both domains.

Unsupervised DA method: DSN (3.2)

[13] K. Bousmalis , G. Trigeorgis , N. Silberman , D. Krishnan , D. Erhan , Domain separation networks, in NIPS, 2016, pp. 
343–351 . 
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DSNs explicitly and jointly model both private and shared components of the domain 
representations. The private component of the representation is specific to a single 
domain and the shared component of the representation is shared by both domains.

Unsupervised DA method: DSN (3.2)

1

2

3

4
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Unsupervised DA method: DSN (3.2)



38

Unsupervised DA method: Tri-training (4.1)

Tri-training 
method use three 
networks 
asymmetrically to 
generate pseudo 
labels. By 
asymmetric, two 
networks are used
to label unlabeled 
target samples and 
one network
is trained by the 
samples to obtain 
target 
discriminative
representations.

[14] Saito K, Ushiku Y, Harada T. Asymmetric tri-training for unsupervised domain adaptation. In ICML 2017.
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Firstly, an Easy-to-Hard Transfer Strategy (EHTS) progressively selects reliable 
pseudo-labeled target samples with cross-domain similarity measurements.

Unsupervised DA method: EHTS+APA (4.2)

The source prototype is a mean vector of 
the embedded source samples in each 
class

It uses a similarity measurement  to 
cluster unlabeled target sample to the 
corresponding source prototypes

[15] Chen C, Xie W, Xu T, et al. Progressive Feature Alignment for Unsupervised Domain Adaptation. arXiv preprint 
arXiv:1811.08585, 2018.
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Adaptive Prototype Alignment (APA) is proposed to align the source and target 
prototypes for each category. Rather than back-propagating the category loss for 
target samples based on pseudo-labeled samples, our work statistically align the cross-
domain class distributions based on the source samples and the selected pseudo-
labeled target samples.

Unsupervised DA method: EHTS+APA (4.2)

1.Initial global prototypes 2. Updated prototypes 3. Prototypes align
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Deep visual domain adaptation: A survey

[2] M. Wang and W. Deng. Deep visual domain adaptation: A survey. Neurocomputing, 312:135 – 153, 2018.

Supervised 
DA

Unsupervised
DA

Discrepancy-
based DA

Class criterion √

Statistic criterion √

Architecture criterion √ √

Geometric criterion √

Adversarial-
based DA

Generative model √

Non-generative model √

Reconstructi
on-based DA

Encoder-decoder 
model

√

Adversarial model √

1 One-step DA

2 Multi-step DA

3 Heterogeneous DA
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Application of domain adaptation

Image classification1 Face recognition2 Object detection3

Semantic 
segmentation4

Person 
re-identification 

5 Image-to-image 
translation6

[2] M. Wang and W. Deng. Deep visual domain adaptation: A survey. Neurocomputing, 312:135 – 153, 2018.
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Face recognition

In 2014, DeepFace and DeepID achieved state-of-the-art accuracy, and research focus 
has shifted to deep-learning-based approaches. As the representation pipeline becomes 
deeper and deeper, the LFW (Labeled Face in-the-Wild) performance steadily 
improves from around 60% to above 90%, while deep learning boosts the 
performance to 99.80% in only three years.

[16] M. Wang and W. Deng. Deep face recognition: A survey. arXiv preprint arXiv:1804.06655, 2018. 1, 2, 3
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Face recognition

Algorithms

Data ScenesFace recognition

[16] M. Wang and W. Deng. Deep face recognition: A survey. arXiv preprint arXiv:1804.06655, 2018. 1, 2, 3



45

Background

More and more people find that a problematic issue, namely racial bias, has always 
been concealed in the previous studies due to biased benchmarks but explicitly 
degrades the performance in realistic FR systems.

1

2

Amazon’s Rekognition Tool incorrectly matched 28 U.S. 
congressmen with criminals, especially non-Caucasian people.

The accuracies of 3 commercial gender classification 
algorithms drop largely on darker female faces.

3 MIT Technology Reviewer 
suggested that racial bias in 
databases will reflect in algorithms, 
hence the performances of FR 
systems depend on the race.

[17]Wang M, Deng W, Hu J, et al. Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation. 
arXiv preprint arXiv:1812.00194, 2018.
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So little testing information available makes it hard to measure the racial bias in 
existing FR algorithms and there has yet to be a comprehensive study that investigates 
how deep FR algorithms are affected by it.

Train/
Test 

Database 
Racial distribution (%)

Caucasian Asian Indian African

train

CASIA-WebFace [17] 84.5 2.6 1.6 11.3

VGGFace2 [18] 74.2 6.0 4.0 15.8

MS-Celeb-1M [19] 76.3 6.6 2.6 14.5

test

LFW [20] 69.9 13.2 2.9 14.0

IJB-A [21] 66.0 9.8 7.2 17.0

RFW 25.0 25.0 25.0 25.0

Blocks

[18] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from scratch. arXiv preprint arXiv:1411.7923, 2014.
[19] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2: A dataset for recognising faces across pose and age. arXiv preprint 
arXiv:1710.08092, 2017.
[20] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In ECCV, pages 87–102. 
Springer, 2016.
[21] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained 
environments. Technical report, Technical Report 07-49, University of Massachusetts, Amherst, 2007
[22] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother, A. Mah, and A. K. Jain. Pushing the frontiers of unconstrained face 
detection and recognition: Iarpa janus benchmark a. In CVPR, pages 1931–1939, 2015.

[17]Wang M, Deng W, Hu J, et al. Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation. 
arXiv preprint arXiv:1812.00194, 2018.



47

Racial Faces in-the-Wild (RFW) 

Racial Faces in-the-Wild (RFW) is a large-scale face database for studying racial bias 
in face recognition which has two important uses:

• Measure racial bias of FR algorithms. Four testing subsets, namely Caucasian, Asian, Indian 
and African, are constructed, and each contains about 3000 individuals with 6000 image pairs for 
face verification.

• Reduce racial bias by transfer learning. Four training subsets are offered as well. The Caucasian 
subset consists of about 500K labeled images of 10k identities and other-race subsets contain 50K 
unlabeled images, respectively.

[17]Wang M, Deng W, Hu J, et al. Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation. 
arXiv preprint arXiv:1812.00194, 2018.
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Collection process

We estimate the race of images in MS-Celeb-1M using Face++ API and select about 
625K images of 25K celebrities of different races to construct a new RFW database. 
The collection process is as following:

1

2

Race detection

For each identity in MS-Celeb-1M, it will be selected 
only if almost images are estimated as the same race 
by Face++ API.

Data re-cleaning

We manually remove outlier faces for each identity as
well as outlier identities for each race manually.

[17]Wang M, Deng W, Hu J, et al. Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation. 
arXiv preprint arXiv:1812.00194, 2018.
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Collection process 

We estimate the race of images in MS-Celeb-1M using Face++ API and select about 
625K images of 25K celebrities of different races to construct a new RFW database. 
The collection process is as following:

Subsets
Train Test

#subjects #Images #subjects #Images

Caucasian 10000 468139 2959 10196

Indian - 52285 2984 10308

Asian - 54188 2492 9688

African - 50588 2995 10415

3

4

Testing set construction

Training set construction

Table 1. The number of identities and images in RFW

[17]Wang M, Deng W, Hu J, et al. Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation. 
arXiv preprint arXiv:1812.00194, 2018.
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We construct our testing set similar to LFW. Besides,
• RFW considers both the large intra-class variance and the small inter-class variance 

simultaneously to get close to more realistic scenarios.
• Four testing subsets ensure to exclude other factors (e.g. pose, age and gender) except for race 

which can cause difference.

Statistics and analyses 

Figure 1. The pose (yaw and pitch), age and gender distribution of four testing subsets

Figure 2. The pose and age gap distribution of RFW and LFW

From Fig. 1, there are no large differences in pose, age and 
gender distribution between Caucasian, Indian and Asian 
testing sets. African set has a smaller age gap and the least 
females which makes Africans are easier to be recognized.

From Fig. 2, Compared to LFW, the pose and age gap of 
positive pairs in RFW are larger which shows we 
successfully add variations to intra-class.

[17]Wang M, Deng W, Hu J, et al. Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation. 
arXiv preprint arXiv:1812.00194, 2018.
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We construct our testing set similar to LFW. Besides,
• RFW considers both the large intra-class variance and the small inter-class variance 

simultaneously to get close to more realistic scenarios.
• Four testing subsets ensure to exclude other factors (e.g. pose, age and gender) except for race 

which can cause difference.

Statistics and analyses 

Figure 3. Examples of difficult pairs in RFW dataset, which challenge the recognizer by the pose, age, expression and 
make-up variations of same people and the similar appearance of different people.

[17]Wang M, Deng W, Hu J, et al. Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation. 
arXiv preprint arXiv:1812.00194, 2018.
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(a) The feature space of four testing subsets visualized by t-SNE. Each dot 
color represents a image belong to Caucasian, Indian, Asian or African. (b) The 
distribution discrepancy measured by MMD. ’Ca’, ’As’, ’In’ and ’Af’ represent 

Caucasian, Asian, Indian and African, respectively. ’Ca-As’ represents the 

distribution discrepancy between Caucasian and Asian, and so on

Through experiments on our RFW, we first prove that:
• From results of average faces, T-SNE and distribution discrepancy measured by MMD, there is 

domain gap between Caucasians and other races. 
• FR systems indeed work unequally well for different races (racial bias); the deep models trained 

on the current benchmarks do not perform well on non-Caucasian faces (other-race effect).

1 2Image level Feature level

Domain gap

[17]Wang M, Deng W, Hu J, et al. Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation. 
arXiv preprint arXiv:1812.00194, 2018.
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Through experiments on our RFW, we first prove that:
• From results of average faces, T-SNE and distribution discrepancy measured by MMD, there is 

domain gap between Caucasians and other races. 
• FR systems indeed work unequally well for different races (racial bias); the deep models trained 

on the current benchmarks do not perform well on non-Caucasian faces (other-race effect).

Model LFW
RFW

Caucasian Indian Asian African

Algorithms

Center-loss 98.75 87.18 81.92 79.32 78.00

SphereFace 99.27 90.80 87.02 82.95 82.28

ArcFace 99.40 92.15 88.00 83.98 84.93

VGGFace2 99.30 89.90 86.13 84.93 83.38

Mean 99.18 90.01 85.77 82.80 82.15

Commerci
al APIs

Face++ 97.03 93.90 88.55 92.47 87.50

Baidu 98.67 89.13 86.53 90.27 77.97

Amazon 98.50 90.45 87.20 84.87 86.27

Microsoft 98.22 87.60 82.83 79.67 75.83

Mean 98.11 90.27 86.28 86.82 81.89

Racial bias

Figure 4. Distribution of cosine-distances of 6000 pairsTable 2. Face Verification Accuracy (%) on RFW dataset

[17]Wang M, Deng W, Hu J, et al. Racial Faces in-the-Wild: Reducing Racial Bias by Deep Unsupervised Domain Adaptation. 
arXiv preprint arXiv:1812.00194, 2018.
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We propose a new domain adaptation method, i.e. IMAN. It identifies a feature space 
where data in the source and the target domains are similarly distributed, it also 
learns the target feature space discriminatively, optimizing an mutual-information 
loss as an proxy to maximize the decision margin on the unlabeled target domain.

Methods Caucasian Indian Asian African

Baseline 94.78 90.48 86.27 85.13
DDC [4] - 91.63 87.55 86.28
DAN [5] - 91.78 87.78 86.30
PL5 [22] - 92.00 88.33 87.67
PL5+PL1 - 92.08 88.80 88.12

PL5+MMD - 92.00 88.65 87.92
IMAN (ours) - 93.55 89.87 88.88
IMAN* (ours) - 94.15 91.15 91.42

Deep information maximization adaptation network (IMAN)

[4] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain 
confusion: Maximizing for domain invariance. Computer Science, 2014.
[5] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features 
with deep adaptation networks. In ICML, pages 97–105, 2015.
[23] A. Nech and I. Kemelmacher-Shlizerman. Level playing field for million 
scale face recognition. In CVPR, pages 3406–3415. IEEE, 2017.
[17]Wang M, Deng W, Hu J, et al. Racial Faces in-the-Wild: Reducing 
Racial Bias by Deep Unsupervised Domain Adaptation. arXiv preprint 
arXiv:1812.00194, 2018.
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